
Modular forms and applications

Exercise Sheet 2

For this exercise sheet we define the following congruence subgroups of SL2(Z), where N ∈ Z≥1:

Γ0(N) =

{(
a b
Nc d

)
|a, b, c, d ∈ Z, ad−Nbc = 1

}
,

and

Γ1(N) =

{(
a b
Nc d

)
|a, b, c, d ∈ Z, ad−Nbc = 1, d ≡ 1 (modN)

}
.

Exercise 1. Let P1(C) denote the projective line. The action of SL2(R) on H can be realized as restriction
of the natural action of SL2(R) on P1(C). Here we embed C ∋ z 7→ [z : 1] ∈ P1(C) and ∞ = [1 : 0] ∈ P1(C).
Prove the following assertions about γ ∈ SL2(R)∖ {±I2}:

(a) |tr γ| < 2 if and only if γ fixes exactly one point in H and one in H = {x+ iy| x ∈ R, y < 0}.
Definition: such a matrix is called elliptic.

(b) |tr γ| > 2 if and only if γ fixes two points, both contained in R⊔ {∞} (where we see R ⊂ C ⊂ P1(C) by
the above map), and none in H.

Definition: such a matrix is called hyperbolic.

(c) |tr γ| = 2 if and only if γ fixes only one point on R ⊔ {∞} and none otherwise.

Definition: such a matrix is called parabolic.

Let Γ ⩽ SL2(Z) be a congruence subgroup. Denote Γ = Γ/{±I2}. We call z ∈ H an elliptic point for Γ
if StabΓ(z) is not trivial. We identify two Γ-elliptic points z1 ∼ z2 if there exist γ ∈ Γ such that γz1 = z2.

(d) Show that SL2(Z) has two equivalence classes of elliptic points.

(e) Show that an elliptic matrix in SL2(Z) has finite order.

(f) Show that Γ(N) for any N ≥ 2 and Γ1(N) for any N ≥ 4, do not have elliptic points.

(g) Does Γ1(3) have an elliptic point?

Solution. Let γ ∈ SL2(R)∖ {±I2}.

(a) Consider the characteristic polynomial

X2 − Tr(γ)X + 1 ∈ R[X]

of γ. This can have 0, 1 or 2 roots depending on Tr(γ). If |Tr(γ)| < 2 then this polynomial has two
non-real roots, i.e. γ has two non-real eigenvalues, say λ and λ. Let ( z1z2 ) be an eigenvector to the
eigenvalue λ. Then z2 ̸= 0, otherwise az1 = λz1 which is not possibile since λ /∈ R (similarly z1 ̸= 0).
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After dividing we may assume z2 = 1. Since λ is not real then so cannot be z1. Now both ( z11 ) and(
z1
1

)
are eigenvector of γ and in particular the modular action of γ fixes both z1 and z1 one of them

lying in H, the other in H.

Conversely if the modular action of γ fixes z1 ∈ H. Then ( z11 ) is an eigenvector of γ. Since γ is real
and z1 ∈ H the eigenvalue (which is equal to j(γ)(z1), see Exercise sheet 1 for the j-function) cannot
be real. Hence |Tr(γ)| < 2.

(b) If |Tr(γ)| > 2, then γ has two real eigenvalues. It is therefore diagonalizable with eigenvalues, say
λ, λ−1 ∈ R. Let ( z1z2 ) be a λ-eigenvector. Then the modular action of γ fixes z1/z2 ∈ R ⊔ {∞} (where
we set eventually z1/0 = ∞). Any eigenvector for λ−1 will give another fixed point for the modular
action of γ.

Conversely suppose that γ fixes two points as described. Then γ has two real eigenvector and so two
real eigenvalues. Say λ ̸= λ−1. Hence |Tr(γ)| > 2.

(c) Now suppose Tr(γ) = ±2. Then γ has exactly one eigenvalue, i.e. Tr(γ)
2 = ±1. Since γ is not ± the

identity it is not diagonalizable and in particular it has only one, up to scalar, eigenvector, which is also
real (it could be (1, 0) which is saying the γ fixes infinity), this will be a fixed point for the modular
action. Conversely if γ fixes only one point in R∪{∞}, then γ has only one eigenvector and hence also
only one eigenvalue, which is then forced to be ±1.

(d) Suppose γ ∈ SL2(Z) fixes a point in H. Then we have −2 < Tr(γ) < 2. In particular, since Tr(γ) is an
integer it can be either −1, or 0 or 1.

Let z ∈ H be an elliptic point for SL2(Z). After translating by an element of SL2(Z) we may assume
that |z| ≥ 1 and −1/2 ≤ Re(z) ≤ 1/2. Suppose γ =

(
a b
c d

)
∈ SL2(Z) fixes z. Then we have

z =
(a− d)± i

√
4− (a+ d)2

2c
,

in particular the imaginary part of z is either 1
c or

√
3

2c depending upon the trace. The constraint

|Re(z)| ≤ 1/2 and |z| ≥ 1 implies Im(z) ≥
√
3
2 and so in either cases we infer that c = ±1. We then

infer that
−1 ≤ a− d ≤ 1

and together with −1 ≤ a + d ≤ 1 we deduce −2 ≤ 2a, 2d ≤ 2 and so a, d ∈ {0,±1}. We insert the
above condition in z (keeping in mind det to be 1) and we actually obtain that z can be one of the
following three: i, ρ or ρ+ 1 = T · ρ.

(e) From the above computations one sees that the stabilizers in SL2(Z) of i and ρ are finite cyclic group of
order 4 and 6 respectively. By the previous point any elliptic matrix in SL2(Z) is conjugate to a matrix
in StabSL2(Z)(i) or StabSL2(Z)(ρ) and hence it is of oder a divisor of 4 or 6 respectively.

(f) Suppose γ =
(
a b
c d

)
∈ Γ1(N) is elliptic. Then as we have already seen Tr(γ) = a+ d ∈ {0,±1}. On the

other hand d ≡ 1 mod (N) and by the determinant condition we deduce a ≡ ad − bc ≡ 1 mod (N).
Hence a + d ≡ 2 mod (N). Hence for N > 3 we deduce that Γ1(N) does not contain any elliptic
matrix. In particular Γ(N) ⩽ Γ1(N) do not have elliptic points. For Γ(2) the proof is similar: suppose(
a b
c d

)
∈ Γ(2) is elliptic. Then |a+ d| < 2. But a and d are both odd numbers. In particular we must

have a = −d. The determinant condition gives us

−a2 − bc = 1,

in particular since both b and c are event it would imply that 3 = −1 = a2 mod (4). But 3 is not a
square modulo 4 as it is easy to check. We deduce that Γ(2) does not contain elliptic matrices.
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(g) For N = 3 the case a + d = −1 ≡ 2 mod (3) can (and indeed does) happen. So we have at least one
elliptic matrix (and so point). For example (

16 −7
39 −17

)
fixes 17+ρ

39 .

Exercise 2 (Fourier expansions at the cusps of modular functions). Let k ∈ Z. Recall the slash k action

of SL2(R) from Exercise sheet 1: for a function f : H → C and a matrix

(
a b
c d

)
∈ SL2(R) we defined the

function

f |k
(
a b
c d

)
(z) = j(c, d)(z)−kf(

az + b

cz + d
) = (cz + d)−kf(

az + b

cz + d
)

(a) Let f : H → C be an holomorphic function and let h > 0 be a positive real number. Suppose that

f |k
(
1 h
0 1

)
= f . Show that there are complex numbers (cn(f))n such that for all z ∈ H we have

f(z) =
∑
n∈Z

cn(f)e
2πinz/h.

Express cn(f) in terms of f and n ∈ Z.

(b) Let Γ ⩽ SL2(Z) be a congruence subgroup, k ∈ Z and f : H → C an holomorphic function. Suppose
that for all γ ∈ Γ we have

f |kγ = f.

Let δ ∈ SL2(Z). Show that there exists an h ∈ Z≥1, (an,δ(f)) ⊂ C, so that

f |kδ(z) =
∑
n∈Z

an,δ(f)e
2πin z

h .

Let f now be a weight k modular form for SL2(Z). Then we can write

f(z) =

∞∑
n=0

an(f)e
2πinz.

Define ord∞(f) = min{n ∈ Z≥0, an(f) ̸= 0}.

(c) Show that there exists y0 > 0 so that f has neither a zero nor a pole in the region {x+it, x ∈ R, t ≥ y0}.

(d) For t ≥ y0 set γ∞,t = {x+ it, |Re(x)| ≤ 1/2}. Show that

1

2πi

∫
γ∞,t

f ′

f
(z) dz = − ord∞(f),

where we integrate from right to left.

Let Γ ⩽ SL2(Z) be a congruence subgroup. Every element of the form δ · ∞, δ ∈ SL2(Z), is called a cusp
point. For Γ a congruence subgroup we identify two cusp points α0, α1 if there exists γ ∈ Γ so that γα0 = α1.
We call any equivalence class of cusp points a cusp of Γ.

(e) Show that Γ0(p) has two cusps for any prime number p.
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(f) Denote ±Γ = ⟨−I2,Γ⟩. Let δ ∈ SL2(Z) and α = δ · ∞. Show that there exists h ∈ Z≥1 so that

Stabδ−1±Γδ(∞) = ⟨−I2,
(
1 h

1

)
⟩.

(g) Show the h above satisfies h = [StabSL2(Z)(α) : Stab±Γ(α)]. In particular, it is independent of δ.

(h) For a modular form f of Γ of weight k we can write

f |kδ(z) =
∞∑
n=0

an,δ(f)e
2πinz/h,

with h as above. We define ordα(f) = ord∞(f |kδ) := min{n, an,δ(f) = 0}. Show that this is indepen-
dent of δ.

Solution. (a) We propose two solutions (up to you choose how different they are):

• Consider the map
ϕ : H → D∖ {0}; z 7→ e2πiz/h,

where D denotes the open unit disk. If we restrict the map to H−h/2,h/2 := {z ∈ H,−h/2 < Re(z) ≤
h/2} this map is bijective and biholomorphic if we restrict the domain further to Re(z) < h/2 with
holomorphic inverse ψ : D ∖ (−1, 0] → H−h/2,h/2; re

iθ 7→ h
2πi (log |q| + iθ), for θ ∈ (−π, π). We

can extend ψ to D ∖ {0} by chosing an argument, for the sake of concreteness (−1, 0) ∋ x 7→
h

2πi (log |x|+ iπ). This map is not continuous at any point in (−1, 0).

Consider the map
f̃ : D∖ {0} → C; q 7→ f(ψ(q)).

We claim, thanks to the periodicity of f , that this map is indeed holomorphic. This would imply
that f̃ has a Laurent series with positive convergence radius around 0, i.e. that

f̃(q) =
∑
n∈Z

cn(f)q
n,

i.e. with z = ψ(q)

f(z) =
∑
n∈Z

cn(f)e
2πinz/h.

We now argue why f̃ is holomorphic. The picture is clear, but the computations is a bit messy
and you can avoid to read it if do not really want to go into the details. We show indeed that
f̃ is complex differentiable at any q0 ∈ (−1, 0). Let (qn)n ⊂ D ∖ {0} be any sequence so that
qn = rne

iθn → q0 as n→ ∞. We want to show that the limit

f̃(qn)− f̃(q0)

qn − q0

exists (and it is independent of the sequence). We may assume that θn ∈ (−π, π] for all n. The
sequence (θn) can be partitioned into two sequences (one of them possibly empty) (θnj )j , (θnk

)k
so that θnj → −π and θnk

→ π. Notice that ψ(qnj ) → ψ(q0)− h.

f̃(qnj )− f̃(q0)

qnj
− q0

=
f(ψ(qnj ))− f(ψ(q0))

ψ(qnj
) + h− ψ(q0)

ψ(qnj ) + h− ψ(q0)

qnj
− q0

=
f(ψ(qnj

) + h)− f(ψ(q0))

ψ(qnj ) + h− ψ(q0)

ψ(qnj
) + h− ψ(q0)

e2πi(ψ(qnj
)+h)/h − e2πi(ψ(q0)/h

,

letting j → ∞ this becomes f ′(ψ(q0))
h

2πiq0
. Similarly (without the need of translation by h) one

computes the limit for the sequence (qnk
) and see that it is as well f ′(ψ(q0))

h
2πiq0

. In particular f̃
is complex differentiable at q0.
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• The alternative (probably cleaner) proposed solution is the following. For fixed y > 0 consider the
h-periodic function

R ∋ x 7→ fy(x) = f(x+ iy + z).

By Fourier analysis there exist Fourier coefficients cn(fy) = cn(f, y) ∈ C so that

fy(x) =
∑
n∈Z

cn(f, y)e
2πix/h.

We now want to understand the y-dependency of the coefficients

cn(f, y) =
1

h

∫ h

0

f(x+ iy)e−2πinx/hdx.

Since f is holomorphic it satisfies Cauchy-Riemann equations we can use these to gain information
on the y derivatives of cn(f, y), concretely:

∂ycn(f, y) =
1

h

∫ h

0

(∂yf)(x+ iy)e−2πinx/h dx

=
i

h

∫ h

0

(∂xf)(x+ iy)e−2πinx/h dx

=
−2πn

h

1

h

∫ h

0

f(x+ iy)e−2πinx/h dx = −2πn

h
cn(f, y).

The solutions of this functional equation are of the form cn(f, y) = cn(f)e
−2πny/h.

(b) By definition there exists h ∈ Z≥1 so that Γ(h) ⩽ Γ. Recall that Γ(h) ◁ SL2(Z). The function f |kδ
transforms like a modular form for the congruence subgroup δ−1Γδ, which contains Γ(h). In particular
( 1 h1 ) ∈ δ−1Γδ, and so

(f |kδ)|k
(
1 h

1

)
= f |kδ,

and so we can use the previous subexercise.

(c) This is better viewed using the meromorphic function f̃ : D ∖ {0} → C so that for any z ∈ C we have
f̃(e2πiz) = f(z). See the correction of the first bullet for details.

Since zero and poles of a meromorphic function are discrete, there exists a r ∈ (0, 1) so that f̃ does not
have any pole or zero in the disk {0 < |z| < r}.1 Hence, f does not have any pole or zero in the region
Im(z) > 1

2π log(1/r).

(d) Let f̃ : D∖ {0} → C the meromorphic function so that f̃(e2πiz) = f(z) for all z ∈ H. For any r ∈ (0, 1)
we have, by known results of complex analysis∫

∂Br(0)

f̃ ′(q)

f̃(q)
dq = 2πi

∑
q∈Br(0)

ordq(f). (0.1)

The integration being anti-clockwise. In particular, if we choose r small enough we have∫
∂Br(0)

f̃ ′(q)

f̃(q)
dq = 2πi ord0(f̃) = 2πi ord∞(f),

1Here we are assuming indeed that f̃ has a removable singularity at 0, everything works fine if we only assume that f̃ has
at most a pole at 0
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where the last equality follows by definition. From the equality f̃(e2πiz) = f(z), we deduce that
f̃ ′(e2πiz) = 1

2πie
−2πizf ′(z)∫

∂Br(0)

f̃ ′

f
(q) dq =

∫ 1

0

(2πire2πix)
f̃ ′

f̃
(re2πix) dx

=

∫ 1

0

2πie2πi(x−
i

2π log r) f̃
′

f
(e2πi(x−

i
2π log r)) dx

=

∫ 1/2

−1/2

f ′

f
(x+ i

log(1/r)

2π
) dx.

Hence the desired equality for r (respectively 1
r ) small (resp. 1

r big) enough.

(e) Let a
pc ∈ Q, with (a, pc) = 1. Then there exists b, d ∈ Z so that ad− pcb = 1 and we see that(

a b
pc d

)
· ∞ =

a

pc
.

Let now a
c ∈ Q so that (ap, c) = 1. Then there exists b, d ∈ Z so that −apd+ bc = 1 and we have(

b a
pd c

)
· 0 =

a

c
.

We proved that Γ0(p) has two cusps and they are represented by ∞ and 0 respectively.

(f) First notice that

StabSL2(Z)(∞) =

{(
±1 b

±1

)
, b ∈ Z

}
≃ Z/2× Z

where the last isomorphism is as abstract group. In particular StabSL2(Z)(∞)/{±1} ≃ Z and each of its
subgroups is cyclic. In particular there exists h ∈ Z≥1 so that

⟨
(
1 h

1

)
⟩/{±I2} = Stabδ−1Γδ(∞)/{±I2} ⩽ StabSL2(Z)(∞)/{±I2},

and so the claim.

(g) Clearly h = [StabPSL2(Z)(∞) : Stabδ−1Γδ(∞)] = [StabSL2(Z)(∞) : Stabδ−1±Γδ(∞)], where Γ = Γ/{±I2}.
Notice that Stabδ−1±Γδ(∞) = δ−1 Stab±Γ(α)δ and StabSL2(Z)(∞) = δ−1 StabSL2(Z)(α)δ. and so

[StabSL2(Z)(∞) : Stabδ−1Γδ(∞)] = [StabSL2(Z)(α) : Stab±Γ(α)].

(h) Suppose δ1 · ∞ = α = δ2 · ∞. In particular δ−1
1 δ2 ∈ StabSL2(Z)(∞), and so there exists m ∈ Z so that

δ−1
1 δ2 = ( 1 m1 ) and so

∞∑
n=0

an,δ1(f)e
2πinz

h = f |kδ1(z)

= f |kδ2(z +m) =

∞∑
n=0

an,δ2(f)e
2πim

h e
2πinz

h .

It follows that an,δ1(f) = an,δ2(f)e
2πim

h and so the claim.
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Exercise 3. Recall that we defined the principal congruence subgroup Γ(N) for any integer N ≥ 1 as the
Kernel of the following group homomorphism

πN : SL2(Z) → SL2(Z/NZ);
(
a b
c d

)
7→

(
a (modN) b (modN)
c (modN) d (modN)

)
(a) Show that πN is surjective.

Possible strategy: You may first want to show that for integers c, d ∈ Z so that (c, d,N) = 1 (that is,
there is no prime dividing c, d and N simultaneously), we can find c′, d′ ∈ Z so that c′ ≡ c (modN),
d′ ≡ d mod N and (c′, d′) = 1.

(b) Show that [SL2(Z) : Γ(N)] = N3
∏
p|N

(
1− 1

p2

)
.

(c) Find isomorphisms of groups

Γ1(N)/Γ(N) → Z/NZ, Γ0(N)/Γ1(N) → (Z/NZ)×.

(d) Use the above to compute [SL2(Z) : Γ0(N)] = N
∏
p|N (1+ 1

p ) and [SL2(Z) : Γ1(N)] = N2
∏
p|N

(
1− 1

p2

)
.

Solution. (a) Consider a matrix

g =

(
a b
c d

)
∈ Mat2(Z)

so that ad− bc ≡ 1 mod (N). We want to find a matrix

g′ =

(
a′ b′

c′ d′

)
∈ SL2(Z)

so that g′ mod (N) ≡ g mod (N).

First we notice that (a, c,N) = 1, i.e. there is no prime dividing all the three. Indeed if there would
exist a prime p|a, c,N , then p|ad− bc = 1+ kN (for some k ∈ Z) and simultaneously p|N , which would
imply p|1.
We try to find coprime integers a′, c′ so that a′ ≡ a mod (N) and c′ ≡ c mod (N). For this purpose
choose a′ = a if a ̸= 0 otherwise choose a′ = N . and write c′ = c + k1N for some k1 to be chosen. If
p|a′ we have three possible cases:

• (C1): p divides c but not N ,

• (C2): p divides N but not c,

• (C3): p divides neither c nor N .

In particular choose k1 ∈ Z so that if p|a′ and p obeys (C1) or (C2), then k1 ≡ 1 mod p and otherwise
if p|a′ and p obeys (C3) then choose k1 so that k1 ≡ 0 mod p. This is possible because a′ has finitely
many prime divisors and because of the Chinese Remainder Theorem.

By construction we have that for any p|a′ we have p ∤ c′. In particular (a′, c′) = 1.

At this point let b0, d0 ∈ Z so that a′d0 − b0c
′ = 1. Choose

b′ = b+ b0(1− (a′d− bc′)) ≡ b mod (N), d′ = d+ d0(1− (a′d− bc′)) ≡ d mod (N),

then

g′ =

(
a′ b′

c′ d′

)
∈ SL2(Z)
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has determinant

a′d′ − b′c′ = (a′d− c′b)(1− (a′d0 − c′b0)) + (a′d0 − c′b0) = 1

and g′ ≡ g mod (N).

We have so
[SL2(Z) : Γ(N)] = |SL2(Z/NZ)|.

We compute the latter, first by the Chinese remainder Thoerem we notice that

SL2(Z/N) ≃
∏
p|N

SL2(Z/pordp(N)),

in particular it is sufficient to compute the cardinality of SL2(Z/pk), when p is prime. To do that we
count the number of matrices (

a b
c d

)
such that ad − bc ∈ (Z/pk)× and we divide by φ(pk). The entry a can be chosen among pk numbers.
Suppose p|a, then we can freely choose d, but both b, c ∈ (Z/pk)× (and every choice is fine). If p ∤ a,
then we have two cases: if p|d, this forces b, c ∈ (Z/p)× (and every choice is fine), if p ∤ d then we have
two additional cases: if p divides c, then any choice of b is fine and if p ∤ c, then

ad− bc /∈ (Z/pk)× ⇔ b ≡ adc−1 mod p,

which happens, once fixed a, c, d, for pk−1 b’s. so in total we have

|SL2(Z/pk)| =
1

φ(pk)

(
pk−1pkφ(pk)2 + φ(pk)(pk−1φ(pk)2 + φ(pk)(pk−1pk + φ(pk)(pk − pk−1)))

)
=

1

φ(pk)

(
pkpk−1φ(pk)2 + pk−1φ(pk)3 + pkpk−1φ(pk)2 + φ(pk)4

)
=

1

φ(pk)

(
2pkpk−1φ(pk)2 + pkφ(pk)3

)
= pkφ(pk)(2pk−1 + φ(pk))

= p3k(1− 1/p)(1 + 1/p) = p3k(1− 1/p2).

In particular we infer

[SL2(Z) : Γ(N)] = |SL2(Z/N)| = N3
∏
p|N

(
1− 1

p2

)
.

(b) Consider the map

Γ1(N) → Z/N ;

(
a b
c d

)
7→ b,

it is a group homomorphism since for
(
a b
c d

)
∈ Γ1(N) we have a ≡ d ≡ 1 mod (N). The kernel is easily

seen to be Γ(N).

Also the group homomorphism

Γ0(N) → (Z/N)×;

(
a b
c d

)
7→ d

induces an isomorphism Γ0(N)/Γ1(N) ≃ (Z/NZ)×
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(c) We have
[Γ1(N) : Γ(N)] = N.

And [Γ0(N) : Γ1(N)] = φ(N). Hence

[Γ0(N) : Γ(N)] = φ(N)N

Exercise 4 (graded). (a) Prove that SL2(Z) is generated by T = ( 1 1
0 1 ) and S =

(
0 −1
1 0

)
(b) Consider the fundamental domain SL2(Z) seen in class

F = {z ∈ H, −1/2 < Re(z) ≤ 1/2, |z| > 1 if Re(z) < 0, |z| ≥ 1 if Re(z) ≥ 0}.

Draw T · F , S · F , and ST 2S · F .

(c) Find representatives for Γ0(3) \ SL2(Z). You may want to use Exercise 3d.

(d) Draw a fundamental region2 for Γ0(3).

Solution. (a) Let γ =

(
a b
c d

)
∈ SL2(Z). If c = 0, then we have a = d = ±1. After multiplying by

S2 = −I2 if necessary we may assume that a = d = 1, i.e. γ =

(
1 b

1

)
= T b. Suppose now that c ̸= 0.

Then there exist q, r ∈ Z, 0 ≤ r < |c|, with a = qc+ r. Hence,

ST−qγ =

(
−c −d
r b− qd

)
.

If r = 0, then we are in the first case we considered. Otherwise, there exist q2, r2 ∈ Z, 0 ≤ r2 < r so
that

ST−q2ST−q1γ =

(
−r b′

r2 d′

)
,

for some b′, d′ ∈ Z. This algorithm takes at most |c| steps to obtain a remainder rm = 0 and it shows
that there exists q1, . . . , qm ∈ Z so that

γ = ±ST qm · · ·ST q1 .

(b) See the following picture. I avoided the axes for aesthetic reasons. In brown you can see TF , in lime
you can see SF , in yellow, orange and red you can see ST−1SF , ST−2SF , ST−3SF respectively. In
pink, purple and blue you can see STSF , ST 2SF and ST 3SF . I produced the images with the Sage
online editor and apparently the legend is not working for the regionplot function.

2By region I mean that it has not to be connected. A connected fundamental region is usually called fundamental domain.
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(c) By Exercise 3d we need to find 4 matrices in SL2(Z) that are Γ0(3)-inequivalent. One sees that γj =(
1
j 1

)
, j = −1, 0, 1, are pairwise inequivalent. In fact for j ̸= k ∈ {−1, 0, 1} we have(

1
j 1

)(
1
−k 1

)
=

(
1

j − k 1

)
/∈ Γ0(3).

We have for j ∈ {−1, 0, 1} that (
1
j 1

)
S−1 =

(
0 1
−1 j

)
/∈ Γ0(3).

In particular we see that

SL2(Z) = Γ0(3) ⊔ Γ0(3)γ−1 ⊔ Γ0(3)γ1 ⊔ Γ0(3)S.

(d) First we prove the following: Let Γ ⩽ SL2(Z) be a finite index subgroup and suppose −I2 ∈ Γ and
Γ \ SL2(Z) =

⊔′
i Γγi, where the dash is there to indicate a finite union. Then

G =

′⋃
i

γiF

is (almost) a fundamental domain for the action of Γ on H. One may need to pay extra attention to the
elliptic points if one really want a fundamental domain (or region). Strictly speaking, if z′ ∈ F is an
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elliptic point (i.e. either i or eπi/3), then it might be that there exists γj , γi representatives and δ ∈ Γ
so that δγiz

′ = γjz
′, that is δ ∈ γj StabSL2(Z)(z

′)γ−1
i , or at least I can not see a reason to exclude this.

Anyway, this is not so important as it suffices to eventually remove finitely many points and the quality
of the picture does not change.

For the following picture (which gives in fact a connected fundamental domain) I used the following
representatives: I2, ST =

(
0 −1
1 1

)
, ST−1 =

(
0 −1
1 −1

)
, S =

(
0 −1
1 0

)
. This is a set of representatives, since

TST = ( 11 1 ), T ∈ Γ0(3), −T−1ST−1 =
(

1
−1 1

)
, −T−1 ∈ Γ0(3).
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