Modular forms and applications
Exercise Sheet 2

For this exercise sheet we define the following congruence subgroups of SLo(Z), where N € Z>:

Io(N) = {(J\(;c Z) la,b,c,d € Z,ad — Nbc = 1},

and
T1(N) = {( “c Z) la,b,c,d € Z,ad — Nbe =1, d = l(modN)}.

Exercise 1. Let P!(C) denote the projective line. The action of SLy(R) on H can be realized as restriction
of the natural action of SLz(R) on P!(C). Here we embed C 3 z — [z : 1] € P1(C) and oo = [1 : 0] € P}(C).
Prove the following assertions about vy € SLa(R) ~\ {£12}:

(a) |try| < 2 if and only if v fixes exactly one point in H and one in H = {z + iy| * € R, y < 0}.

Definition: such a matrix is called elliptic.

(b) [trvy| > 2 if and only if v fixes two points, both contained in R LI {oo} (where we see R C C C P*(C) by
the above map), and none in H.

Definition: such a matrix is called hyperbolic.

(c) |trvy| =2 if and only if v fixes only one point on R U {occ} and none otherwise.

Definition: such a matrix is called parabolic.

Let I' < SLy(Z) be a congruence subgroup. Denote I' = I'/{£1I5}. We call z € H an elliptic point for T
if Stabp(2) is not trivial. We identify two I'-elliptic points z; ~ 2o if there exist v € I' such that vz, = 2.

(d) Show that SLy(Z) has two equivalence classes of elliptic points.
(e) Show that an elliptic matrix in SLo(Z) has finite order.
(f) Show that I'(N) for any N > 2 and I';(N) for any N > 4, do not have elliptic points.
(g) Does I'1(3) have an elliptic point?
Solution. Let v € SLo(R) \ {£I:}.
(a) Consider the characteristic polynomial
X% - Tr(y)X +1 € R[X]

of 7. This can have 0,1 or 2 roots depending on Tr(y). If |Tr(v)| < 2 then this polynomial has two
non-real roots, i.e. 7y has two non-real eigenvalues, say A\ and A. Let (Z!) be an eigenvector to the
eigenvalue A. Then zy # 0, otherwise az; = Az; which is not possibile since A ¢ R (similarly z; # 0).



After dividing we may assume 2z = 1. Since X is not real then so cannot be z;. Now both (%) and

(211) are eigenvector of v and in particular the modular action of « fixes both z; and Z7 one of them
lying in H, the other in H.

Conversely if the modular action of + fixes z; € H. Then (7') is an eigenvector of v. Since + is real

and z; € H the eigenvalue (which is equal to j(v)(z1), see Exercise sheet 1 for the j-function) cannot
be real. Hence |Tr(v)| < 2.

If |Tr(y)] > 2, then v has two real eigenvalues. It is therefore diagonalizable with eigenvalues, say
M AT € R, Let (Z)) be a A-eigenvector. Then the modular action of v fixes 2;/22 € R {oo} (where
we set eventually z;/0 = 00). Any eigenvector for A1 will give another fixed point for the modular
action of 7.

Conversely suppose that ~ fixes two points as described. Then 7y has two real eigenvector and so two
real eigenvalues. Say A # A1, Hence |Tr(y)| > 2.

Now suppose Tr(vy) = £2. Then 7 has exactly one eigenvalue, i.e. % = +1. Since 7 is not + the
identity it is not diagonalizable and in particular it has only one, up to scalar, eigenvector, which is also
real (it could be (1,0) which is saying the v fixes infinity), this will be a fixed point for the modular
action. Conversely if 7 fixes only one point in RU {oo}, then « has only one eigenvector and hence also
only one eigenvalue, which is then forced to be +1.

Suppose v € SLa(Z) fixes a point in H. Then we have —2 < Tr(y) < 2. In particular, since Tr(7) is an
integer it can be either —1, or 0 or 1.

Let z € H be an elliptic point for SLy(Z). After translating by an element of SLo(Z) we may assume
that [2| > 1 and —1/2 < Re(z) < 1/2. Suppose v = (24) € SLy(Z) fixes z. Then we have

(a—d) +iy/4—(a+d)?
2c ’

in particular the imaginary part of z is either % or\z/—f’ depending upon the trace. The constraint

|[Re(2)| < 1/2 and |z| > 1 implies Im(z) > @ and so in either cases we infer that ¢ = £1. We then
infer that

—1<a—-d<1

and together with —1 < a +d < 1 we deduce —2 < 2qa,2d < 2 and so a,d € {0,+1}. We insert the
above condition in z (keeping in mind det to be 1) and we actually obtain that z can be one of the
following three: i, por p+1=1T - p.

From the above computations one sees that the stabilizers in SLo(Z) of ¢ and p are finite cyclic group of
order 4 and 6 respectively. By the previous point any elliptic matrix in SLy(Z) is conjugate to a matrix
in Stabgy,, (z) (i) or Stabgy,,z)(p) and hence it is of oder a divisor of 4 or 6 respectively.

Suppose v = (24) € I'1(N) is elliptic. Then as we have already seen Tr(y) = a +d € {0,+1}. On the
other hand d =1 mod (V) and by the determinant condition we deduce a = ad —bc =1 mod (N).
Hence a +d = 2 mod (N). Hence for N > 3 we deduce that I';(N) does not contain any elliptic
matrix. In particular I'(N) < 'y (V) do not have elliptic points. For I'(2) the proof is similar: suppose
(25) € I'(2) is elliptic. Then |a+ d| < 2. But a and d are both odd numbers. In particular we must
have a = —d. The determinant condition gives us

—a® —bc=1,

in particular since both b and ¢ are event it would imply that 3 = —1 = a®> mod (4). But 3 is not a
square modulo 4 as it is easy to check. We deduce that T'(2) does not contain elliptic matrices.



(g) For N = 3 the case a+d = —1 = 2 mod (3) can (and indeed does) happen. So we have at least one
elliptic matrix (and so point). For example
16 -7
39 17

174
fixes ~552.
Exercise 2 (Fourier expansions at the cusps of modular functions). Let k € Z. Recall the slash k action

of SLy(R) from Exercise sheet 1: for a function f: H — C and a matrix (Z b) € SLo(R) we defined the

d
function ) ) )
e (l5) @ =iteae 1 = e a i

(a) Let f : H — C be an holomorphic function and let A > 0 be a positive real number. Suppose that

fle <(1) ff) = f. Show that there are complex numbers (¢, (f)), such that for all z € H we have

f(Z) — ch(f)e%rinz/h.
neZ
Express ¢, (f) in terms of f and n € Z.

(b) Let I' < SLy(Z) be a congruence subgroup, k € Z and f: H — C an holomorphic function. Suppose
that for all v € I' we have

fley = 1.

Let 6 € SLo(Z). Show that there exists an h € Z>1, (an,s(f)) C C, so that

k8(2) = 3 an s

neZ

Let f now be a weight k¥ modular form for SLo(Z). Then we can write
f(Z) _ Z an(f)e,QTrinz.
n=0

Define orde (f) = min{n € Z>¢, a,(f) # 0}.
(¢) Show that there exists yo > 0 so that f has neither a zero nor a pole in the region {z+it, z € R, t > yo}.

(d) For t > yg set Yoot = {x + it, |Re(z)| < 1/2}. Show that

1 1! B
5 [Yw 7(2’) dz = —ordeo(f),

where we integrate from right to left.

Let I' < SLy(Z) be a congruence subgroup. Every element of the form § - 0o, § € SLy(Z), is called a cusp
point. For I' a congruence subgroup we identify two cusp points «y, oy if there exists v € T so that yag = ay.
We call any equivalence class of cusp points a cusp of I.

(e) Show that I'g(p) has two cusps for any prime number p.



(f) Denote £TI" = (—1I5,T'). Let § € SL2(Z) and o = § - 0o. Show that there exists h € Z>1 so that
1 h
Stabg-11ps(00) = (—1Iz, ( 1>>~

(g) Show the h above satisfies h = [Stabgy,, (z)(c) : Stabir(a)]. In particular, it is independent of 0.

(h) For a modular form f of I" of weight k we can write
f|k5(z) — Z amé(f)GZTrinz/h7
n=0

with h as above. We define ord, (f) = ordeo (f|d) == min{n, ay s(f) = 0}. Show that this is indepen-
dent of 6.

Solution. (a) We propose two solutions (up to you choose how different they are):

e Consider the map 4
¢: H— D~ {0} 2 — 272/
where D denotes the open unit disk. If we restrict the map to H_j, /2 52 == {z € H,—h/2 < Re(z) <
h/2} this map is bijective and biholomorphic if we restrict the domain further to Re(z) < h/2 with
holomorphic inverse ¢: D \ (=1,0] — H_j /2,5 /2; re? — %m(logm +10), for § € (—m, 7). We
can extend ¥ to D ~ {0} by chosing an argument, for the sake of concreteness (—1,0) > = —
- (log || + 4m). This map is not continuous at any point in (—1,0).
Consider the map

F:DN {0} = Cig = f(4(a))-
We claim, thanks to the periodicity of f, that this map is indeed holomorphic. This would imply
that f has a Laurent series with positive convergence radius around 0, i.e. that

fla) = el )",

neZ
ie. with z = 9¥(q)

F(2) =" en(f)e?mm=/m,

nez

We now argue why f is holomorphic. The picture is clear, but the computations is a bit messy
and you can avoid to read it if do not really want to go into the details. We show indeed that
f is complex differentiable at any gy € (=1,0). Let (¢n)n € D~ {0} be any sequence so that
qn = e — qo as n — co. We want to show that the limit

fan) = £(q0)
dn — 4o
exists (and it is independent of the sequence). We may assume that 6,, € (—m, 7] for all n. The
sequence (0,,) can be partitioned into two sequences (one of them possibly empty) (0,,;);, (0n, )&
so that 6,, — —m and 6,, — 7. Notice that ¢ (g,,) — ¥(q) — h.

fan,) — F(a0) _ F(W(an,)) — F((q0)) ¥(gn,) + b — ¥(g0)
In; — Qo Y(qn;) +h —1(qo) In; — Qo
_ JWlgn,) + 1) = f(¥(20)) Y(qn;) +h —¥(q)

V(gn,) +h—(qo) 2Pl ) TR/R _ camis(ao) /b

h
27'riq0

letting j — oo this becomes f'(¢(qo)) . Similarly (without the need of translation by h) one

h

Tmige " In particular f

computes the limit for the sequence (gn,) and see that it is as well f'(¢(qo))
is complex differentiable at qq.



e The alternative (probably cleaner) proposed solution is the following. For fixed y > 0 consider the
h-periodic function
Rz fy(z) = flz + iy + 2).

By Fourier analysis there exist Fourier coefficients ¢, (fy) = ¢n(f,y) € C so that
fo@) = 3 enlfim)emiel
neEZ

We now want to understand the y-dependency of the coefficients

1 " . —2minx
) =5 [ T+ ig)emneliaa,

Since f is holomorphic it satisfies Cauchy-Riemann equations we can use these to gain information
on the y derivatives of ¢, (f,y), concretely:

1 h '
8ycn(f,y) = E/O (ayf)(x_;’_iy)e—%rmm/h dr

. LR
— i [ @pa et o
h 0

_ —2m 1

h h

21

h
- —2minx n
| et de = <2 (1),

The solutions of this functional equation are of the form ¢, (f,y) = ¢, (f)e=2 /",

(b) By definition there exists h € Z>; so that I'(h) < I'. Recall that I'(h) < SL2(Z). The function f|,d
transforms like a modular form for the congruence subgroup 6 ~'I'd, which contains I'(h). In particular
(17) €6, and so

hale (*]) = les

and so we can use the previous subexercise.

(¢) This is better viewed using the meromorphic function f : D~ {0} — C so that for any z € C we have

f(e2™#) = f(2). See the correction of the first bullet for details.

Since zero and poles of a meromorphic function are discrete, there exists a r € (0, 1) so that f does not
have any pole or zero in the disk {0 < |z| < r}.! Hence, f does not have any pole or zero in the region
Im(z) > 5= log(1/r).

(d) Let f: D~ {0} — C the meromorphic function so that f(e?™*) = f(z) for all z € H. For any r € (0, 1)
we have, by known results of complex analysis

F'@ 40— ori 4y (f). 0.1
-/E)BT(O) Fla) ™ qu;(o)or ) oy

The integration being anti-clockwise. In particular, if we choose r small enough we have

/ f:(Q) dg = 2miordy(f) = 2miordso (f),
2B,(0) f(q)

1Here we are assuming indeed that f has a removable singularity at 0, everything works fine if we only assume that f has
at most a pole at 0




where the last equality follows by definition. From the equality f (e2™*) = f(2), we deduce that
f/(eQﬂ'iz) — %e—Zmzf/(z)

J’E, 1 ] f/ )

/ —(q) dg = / (2mire?™ ) L (re?™7) dx

2B,(0) J 0 f

NI
=/ 27‘1’2‘62”1(3”7%IUgT)T(e%rz(:vfﬁlogr)) da
0

1/2 g1
_ f log(1/7)
_/_1/2f(x+z o ) d.

Hence the desired equality for r (respectively 1) small (resp. L big) enough.
(e) Let ﬁ € Q, with (a,pc) = 1. Then there exists b,d € Z so that ad — pcb = 1 and we see that
_a
= o
Let now ¢ € Q so that (ap,c) = 1. Then there exists b,d € Z so that —apd 4 bc = 1 and we have
b a a
0= 2
(pd c ) c
We proved that T'p(p) has two cusps and they are represented by oo and 0 respectively.
(f) First notice that
Stab = b beZl,~7/2x17
ta SLz(Z)(OO) = 41/ € = / X

where the last isomorphism is as abstract group. In particular Stabgy,z)(o0)/{#1} ~ Z and each of its
subgroups is cyclic. In particular there exists h € Z>; so that

<<1 fll>>/{ilz} = Stabs-1p5(00)/{£ 12} < Stabgy,(z)(c0)/{£ 12},

and so the claim.

(g) Clearly h = [Stabpgy, z)(00) : Stabs_is(00)] = [Stabgy,, (z)(00) : Stabs-141s(c0)], where I' = I'/{+1>}.
Notice that Stabs-1.15(c0) = 67! Stabip(a)d and Stabgy,, (z)(00) = 6! Stabgy,, (z)(a)d. and so

[Stabgy,, (z)(00) : Stabs-1ps(00)] = [Stabgr,(z)(a) : Stabir(a)].

(h) Suppose 01 - 00 = a = 2 - 0. In particular 51_152 € Stabgy,,(z)(00), and so there exists m € Z so that
67102 = (1) and so

Z an,s, (f)e™ == = flebi(2)
n=0

2wim  2minz

= flda(z+m) = ans,(fle » e "
n=0

2wim

It follows that ans, (f) = ans,(f)e™® and so the claim.




Exercise 3. Recall that we defined the principal congruence subgroup I'(N) for any integer N > 1 as the
Kernel of the following group homomorphism

7N+ SLa(Z) — SLa(Z/NZ); (Z Z) = (ZEESS%; zgﬁ?ﬁ]]\\g)

(a) Show that 7y is surjective.

Possible strategy: You may first want to show that for integers ¢,d € Z so that (¢,d, N) = 1 (that is,

there is no prime dividing ¢,d and N simultaneously), we can find ¢/,d’ € Z so that ¢ = ¢(mod N),
d'=d mod N and (¢/,d') = 1.

(b) Show that [SLa(Z) : T(N)] = N* [ (1 - L).

p2
(c¢) Find isomorphisms of groups

Ty (N)/T(N) = Z/NZ,  To(N)/Ty(N) = (Z/NZ)".

(d) Use the above to compute [SLy(Z) : To(N)] = NleN(l-i-%) and [SLa(Z) : T1(N)] = N2 [~ (1 - i).

Solution. (a) Consider a matrix
a b
g = (C d) S MatQ(Z)

so that ad —bc =1 mod (N). We want to find a matrix

so that ¢’ mod (N) =g mod (N).

First we notice that (a,c, N) = 1, i.e. there is no prime dividing all the three. Indeed if there would
exist a prime pla, ¢, N, then plad —bc = 1+ kN (for some k € Z) and simultaneously p| N, which would

imply p|1.
We try to find coprime integers a’, ¢’ so that «/ = a mod (N) and ¢/ = ¢ mod (N). For this purpose
choose a’ = a if a # 0 otherwise choose o’ = N. and write ¢/ = ¢+ k1 N for some k1 to be chosen. If
pla’ we have three possible cases:

e (C1): p divides ¢ but not N,

e (C2): p divides N but not c,

e (C3): p divides neither ¢ nor N.
In particular choose ki € Z so that if p|a’ and p obeys (C1) or (C2), then ky =1 mod p and otherwise

if pla’ and p obeys (C3) then choose k; so that k; =0 mod p. This is possible because a’ has finitely
many prime divisors and because of the Chinese Remainder Theorem.

By construction we have that for any pla’ we have pt¢’. In particular (a’,¢’) = 1.
At this point let by, dy € Z so that a’dy — by’ = 1. Choose

b =b+bo(1—(a’d—bc’))=b mod (N), d =d+dy(l —(a’d—bc))=d mod (N),

then .
a b
/= (4 o) esn@



has determinant
dd —bd = (ad-b)(1— (a'dy—'bg)) + (a'dg — 'bp) = 1

and ¢ =g mod (N).
We have so
[SL2(Z) : T(N)] = |SL2(Z/NZ)|.
We compute the latter, first by the Chinese remainder Thoerem we notice that

SLa(Z/N) ~ [ [ SLa(Z/p> ™)),
p|N

in particular it is sufficient to compute the cardinality of SLo(Z/p*), when p is prime. To do that we
count the number of matrices

a b

c d

such that ad — bc € (Z/p*)* and we divide by ¢(p*). The entry a can be chosen among p* numbers.
Suppose p|a, then we can freely choose d, but both b,c € (Z/p*)* (and every choice is fine). If p { a,
then we have two cases: if p|d, this forces b, ¢ € (Z/p)* (and every choice is fine), if p { d then we have
two additional cases: if p divides ¢, then any choice of b is fine and if p { ¢, then

ad —be ¢ (Z/p*)* < b=adc™* mod p,

which happens, once fixed a, ¢, d, for p*~! b’s. so in total we have

SLo(Z/p")| = (1k (" (") + (") " o) + () (PP + (") (" = "))

P*)
@ (™" o) + p" o) + PP T e (") + e (pF)?)
1

= 0 (20" P o) + p e (p")?)
= pPe®") (20" + o (p"))

=p* (1= 1/p)(1 +1/p) = p**(1 = 1/p?).
In particular we infer

[SL2(Z) : T(N)] = |SLa(Z/N)| = N* ]| (1 - 12> .

p|N p

Consider the map

I'y(N) = Z/N; (‘CL Z) b,

it is a group homomorphism since for (¢ %) € I'i(N) we have a =d =1 mod (N). The kernel is easily
seen to be I'(V).

Also the group homomorphism

To(N) — (Z/N)*; (‘C‘ Z) —d

induces an isomorphism T'g(N)/T'y(N) ~ (Z/NZ)*



Exercise 4 (graded). (a) Prove that SLy(Z) is generated by 7= (1) and S = (9 ')
(b) Consider the fundamental domain SLs(Z) seen in class
F={z€eH, —1/2 <Re(z) <1/2, |z] > 1if Re(z) <0,|z| > 1if Re(z) > 0}.
Draw T - F, S - F, and ST?S - F.
(c¢) Find representatives for I'g(3) \ SL2(Z). You may want to use Exercise 3d.

(d) Draw a fundamental region? for I'y(3).

a b

Solution. (a) Let v = (c d) € SLo(Z). If ¢ = 0, then we have a = d = +1. After multiplying by

10

1) = T*. Suppose now that ¢ # 0.

82 = —I if necessary we may assume that a =d =1, i.e. v = <

Then there exist ¢,r € Z, 0 < r < |¢|, with a = qc + r. Hence,

—q. _[—c —d
ST 'y—(r b—qd)'

If r = 0, then we are in the first case we considered. Otherwise, there exist ga,70 € Z, 0 < r9 < 1 SO
that .
—q2 —q1 — -r b
ST~ 12ST™ Ty (7“2 a)

for some b',d’" € Z. This algorithm takes at most |c| steps to obtain a remainder r,, = 0 and it shows
that there exists q1,...,¢n € Z so that

y = £8T% ... ST,

(b) See the following picture. I avoided the axes for aesthetic reasons. In brown you can see T'F, in lime
you can see SF, in yellow, orange and red you can see ST 'SF, ST 2SF, ST 3SF respectively. In
pink, purple and blue you can see STSF, ST?SF and ST3SF. I produced the images with the Sage
online editor and apparently the legend is not working for the regionplot function.

2By region I mean that it has not to be connected. A connected fundamental region is usually called fundamental domain.



> <

(c) By Exercise 3d we need to find 4 matrices in SLy(Z) that are I'g(3)-inequivalent. One sees that ~v; =
(51),J=—1,0,1, are pairwise inequivalent. In fact for j # k € {—1,0,1} we have

G )Gl ) ene
We have for j € {—1,0,1} that
(; 1> s = (_01 ;) ¢ To(3).

SL2 (Z) = F(] (3) [N FO (3)’}/_1 (] Fo(?))’}/l (] F0(3)S

In particular we see that

(d) First we prove the following: Let I' < SLo(Z) be a finite index subgroup and suppose —I» € I" and
'\ SLy(Z) = | |; Ty, where the dash is there to indicate a finite union. Then

g= U’Yi]:

is (almost) a fundamental domain for the action of I' on H. One may need to pay extra attention to the
elliptic points if one really want a fundamental domain (or region). Strictly speaking, if 2z’ € F is an

10



elliptic point (i.e. either i or emi/ 3), then it might be that there exists 74, Vi representatives and 6 € I’
so that dv,2" = v;2, that is ¢ € 7; Stabg, (Z)(z')%-_l, or at least I can not see a reason to exclude this.
Anyway, this is not so important as it suffices to eventually remove finitely many points and the quality
of the picture does not change.

For the following picture (which gives in fact a connected fundamental domain) I used the following
representatives: Ir, ST = (9 71), 87! = (921),5 = (93'). This is a set of representatives, since
TST = (1,), T €lo(3), -T7*ST~ = (1), -T ' e€ly(3).
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